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The structural and functional mapping of the brain and neural 
circuits is currently a major endeavor in neuroscience1,2. Large 
projects have been initiated to map the mouse brain in terms 

of cell types and their activity, long-range connectivity patterns and 
microcircuit connectivity3. Examples of projects to map connectiv-
ity and cell types include the Mouse Brain Architecture project4, the 
Allen Mouse Brain Connectivity Atlas5 and the Mouse Connectome 
project6. A challenge central to all such large-scale efforts is the need 
to develop and implement standardized systems to collect, analyze, 
visualize and share whole-brain data7. Advances in experimental 
methods for the dissection of connectivity and function through 
for example genetic labeling of connections and neuronal activity at 
a whole-brain scale now enable the detailed mapping of circuits8,9. 
As a consequence, in addition to the large-scale collaborative proj-
ects, an increasing number of individual laboratories have initiated 
ambitious brain-mapping projects10–15. However, the lack of stan-
dardized and accessible computational tools often limits the power 
and feasibility of large-scale whole-brain mapping efforts.

Here we provide an open source software solution to support 
whole-brain mapping efforts to generate, organize and share whole-
brain mapping projects derived from light microscopy. We have 
developed WholeBrain (http://wholebrainsoftware.org/) to allow 
investigators to quantify and spatially map multidimensional data 
from whole-brain experiments and to compare results across exper-
iments in a single standardized anatomical reference atlas. We also 
developed Openbrainmap (http://openbrainmap.org) to support 
visualization and sharing of data within and between laboratories 
in an interactive web-based framework. The whole computational 
framework is designed to be robust and flexible, allowing its appli-
cation to a wide variety of imaging systems (for example, widefield, 
confocal, light-sheet) and labeling approaches (for example, fluo-
rescent proteins, immunohistochemistry and in situ hybridization). 
Together, this computational framework offers a wide range of tools: 
powerful image-processing pipelines for mapping labeled neurons 

in a standardized brain atlas, Bayesian statistical packages handling 
nested hierarchical data and a framework for producing interac-
tive representations of neuroanatomical data. The framework is 
available as an open-source R package16, and we have produced 
intuitive and concrete guidance through step-by-step video tutori-
als, allowing for rapid implementation of the system in a standard 
laboratory environment. Here we demonstrate how WholeBrain 
and Openbrainmap can be employed to discover brain structure–
function relationships by integrating multidimensional anatomical, 
molecular and functional datasets.

Results
Vector and raster representation in neuroanatomy. All maps are 
the result of efforts to visually represent the physical world (Fig. 1a). 
A comprehensive neuroanatomical framework must be able to han-
dle any type of data that can be described as spatially located within 
the volume of the brain, just as a geographical information system 
is used to analyze and represent different types of data mapped onto 
the earth’s surface.

In general, maps can be constructed using either raster or vec-
tor graphics (Fig. 1b,c). Raster graphics represent data in a grid-cell 
structure (pixels or voxels) parceled into a row and column matrix 
(Fig.  1b). This raster-based analysis is the norm in neuroscience 
today, exemplified by approaches to processing whole-brain cal-
cium imaging17 statistical parametric mapping in functional MRI18, 
differential gene expression, as in the Allen Gene Expression Atlas19, 
and analysis of whole-brain c-fos expression in behavioral condi-
tions15 (additional comparisons of recent approaches to mouse 
brain mapping can be found in Supplementary Table 1). We have 
aimed to construct a comprehensive framework to represent data 
at cellular resolution, based on vector graphics, to allow mapping 
of features through the use of points and curves (Fig.  1d–f). The 
advantage of this approach is that data can be represented simul-
taneously in multiple coordinate reference systems—image pixels, 
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stereotactic coordinates and actual tissue dimensions—instead of 
only transforming data into a single spatial reference frame.

Scale-invariant reference atlas. Tissue coordinates of individual 
features (for example, neurons) are normally mapped into a stan-
dardized reference atlas using raster or polygon graphics20. We have 
instead generated a reference atlas of the adult mouse brain based 
on smooth curves, which can enhance the possibilities for effi-
ciently representing, sharing and editing anatomical definitions in a 
standardized reference atlas.

We therefore decided to represent brain regions as smooth 
surfaces using nonuniform rational B-splines (Fig. 1g). To generate 
a three-dimensional (3D) anatomical reference atlas, we lofted 
points between adjacent coronal sections. Compared to existing 
reference atlases based on solids (Fig. 1h) or polygons (Fig. 1i), 
this approach offers a number of advantages. First, the atlas is 
scale-invariant and can be easily applied on images of any pixel 
resolution. This feature enables comparison of image data across 
microscope systems. Second, atlas intersections can be computed 
at arbitrary angles (Fig. 1j). This feature supports projects in which 
visualization of regions and pathways is better achieved at angles 
other than the canonical (for example, coronal or sagittal). Third, 
the topological representation of brain regions is data-efficient 
and project results can be efficiently shared in a small format. 
Fourth, the nonuniform rational B-splines format enables 
editing of the brain atlas to accommodate customization and  
atlas improvements.

The reference atlas is based on the neuroanatomical definitions 
found in the Allen Institute mouse reference atlas, thereby integrat-
ing the available neuroanatomical and molecular data5,20. As an 
example, this feature enables queries of gene expression from the 
Allen in situ hybridization atlas for any given stereotactic coordi-
nate. In addition, the reference atlas can easily interface with other 
applications, for example, by standardization of tissue sectioning 
using custom 3D-printed brain blocks (Supplementary Fig. 1a–d) 
or through generation of polygon-shaped areas for automated laser 
capture microdissection of defined brain nuclei (Supplementary 
Fig. 1e–j).

Interactive web interface. We further developed an interactive web 
interface to allow investigators to rapidly and in a standardized for-
mat visualize mapping results and to allow them to share data with 
collaborators. The aim was to develop an interface in which data 
visualization could be performed directly in a standard Internet 
browser and without setting up a server. In this interface, detected 
features such as cell bodies and the fit of the reference atlas to the 
tissue can be visualized as an overlaid layer of vector graphics on 
the original raster image (Fig. 2a–c; see http://openbrainmap.org/ 
example_section/ for an example), queried directly as tabulated 
summary statistics (Fig.  2d,e) or rendered in stereotactic coordi-
nates within the reference atlas (Fig. 2f).

To enable rapid visualization and data sharing, output is pro-
vided as a browser-based HTML file with associated image tiles. 
As an example, raster data from a single raw image of a coronal 
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Fig. 1 | A reference atlas based on vector graphics. a–f, In cartography, an object (a) is usually represented either in raster format (b) or vector format 
(c). Similarly, brain tissue (d) can be represented as raster images (e) or as an image composed of geometric points and curves in a vector format (f). 
g, Brain regions defined by polygons (green) are nonscalable compared to regions obtained from nonuniform rational B-splines (NURBS, purple). h–j, In 
3D, reference atlases can be defined based on different geometrical primitives: (h) voxels can be reduced to primitive solids such as cubes, (i) polygon 
surfaces provide a more compact representation of the surface only, and (j) NURBS provide a representation of the surface based on smooth B-splines 
where intersections in the form of curves can be computed to an arbitrary cutting plane.
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brain section (16 bit, 300–400 Mb) is represented as a set of JPEG 
tiles of different resolutions (approximately 20 Mb in total). For the 
purpose of transmitting segmentation and registration results over 
asynchronous browser–server communication, we constructed an 
open standard format for spatial features, along with their nonspa-
tial attributes, based on JavaScript Object Notation (see Methods). 
The web interface is designed with mobile-first principles, support-
ing use on mobile devices, and offers users the ability to further 
draw, edit or define regions of interest (Fig. 2g).

Segmentation by multiresolution decomposition. Segmentation 
is the process of assigning labels to distinct parts of an image to 
mark features of interest, such as labeled cell bodies and fiber tracts. 
In large mapping projects, it is essential to implement automated 
approaches to feature segmentation that can be applied to all images 
with minimal manual intervention.

We used multiresolution decomposition21 as an approach to 
automatically segment fluorescently labeled cell bodies and fiber 
tracts. In this segmentation approach, features of different size (for 

example, cell bodies and cell processes) can be detected by their 
mapping on a distinct spatial scale. As an example, an apical den-
drite (~1–2 µ​m thick) is defined on a smaller spatial scale than a cell 
body (~10–20 µ​m in diameter). Genetic labeling of dendrites and 
cell bodies can therefore be decomposed by designating segmenta-
tion of these features on separate scales.

To decompose the image into different spatial scales (Fig. 3a,b), 
the image data is sent through a stationary wavelet filter bank com-
posed of a set of high-pass and low-pass filters (Supplementary 
Fig. 2a,b). At each iteration, the output of the high-pass branch is 
stored as a set of coefficients called detail coefficients (Fig. 3c–e). 
Detail coefficients contain information on the correlation between 
a wave-like function (wavelet) at a specific scale and the fluores-
cent signal at a specific location in the image. Additional decom-
positions at lower resolution levels are obtained by iterating the 
procedure on the output of the low-pass branch. The output data 
of the low-pass branch at each iteration are called approximation 
coefficients because, at each level, the approximation to the image 
at that resolution level becomes coarser; the detail coefficients 
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indicate what detail in the image is lost (Fig. 3a–f). We extracted 
individual features by thresholding the fluorescence intensity for 
the detail coefficients of interest (i.e., d3 for cell bodies; Fig. 3c–e). 
We then extracted each feature by applying a standard connected-
components algorithm22, which groups connected pixels by their 
borders (Fig. 3g,h).

To address the sensitivity of the approach, we evaluated the signal-
to-noise ratio (SNR) in manually defined regions of interest (neu-
rons versus processes) after applying multiresolution decomposition 
and compared this to binary thresholding of the fluorescent signal in 
the original image (Fig. 3g). We found that the SNR for segmenta-
tion of neurons reached a peak at a theoretical sampling scale period 
of 10.24 μ​m, approximately the size of a cell body (Fig. 3i). Similarly, 
we found that the SNR for processes reached a peak at a sampling 
period of 2.56 μ​m (i.e., the approximate diameter of an apical den-
drite). In summary, detail coefficients at separate spatial scales can 
be used to identify genetically marked cell bodies and processes.

In addition, multiresolution decomposition is particularly valu-
able for comparison and integration of imaging results obtained 
from different microscope systems. In essence, features segmented 
from low- and high-resolution images can be directly compared 
by analyzing detail coefficients at scales with similar scale periods 
(Supplementary Fig.  2c–i). Multiresolution decomposition there-
fore supports data gathering and comparison of segmentation 
results across imaging platforms, projects and laboratories.

Registration to standardized atlas. Image registration is the pro-
cess by which sets of images (for example, coronal mouse brain sec-
tions) are transformed into another coordinate system (for example, 
a stereotactic coordinate system or a reference atlas). Traditional 
registration algorithms in neuroimaging follow a voxel-based anal-
ysis15,19,23. Registrations using voxel-based atlases, such as the Allen 
Mouse Brain Reference Atlas20 or Waxholm space24, are limited to 
21.5–25 μ​m, and even newer isotropic renditions such as the next-
generation common coordinate framework (CCF, v3)25 are still 
limited to a voxel resolution of approximately 10 μ​m. To decrease 
computational time, these registration approaches most often 
require matching of image resolutions by upsampling the lower-res-
olution atlas and downsampling the imaged brain sections. In con-
trast, we decided to perform image registration by segmenting out 
the contour of the brain section using the inherent autofluorescence 
of the brain section itself (Fig. 3j,k). In this way, image registration 
does not introduce artifacts derived from pixel interpolation associ-
ated with upsampling the reference atlas. In addition, it is not neces-
sary to dedicate one imaging channel for the registration process, 
which reduces image acquisition time and facilitates fluorescent 
multichannel experiments (multiplexing).

To generate landmarks between the brain tissue and the ref-
erence atlas, the segmented contour of the imaged brain section 
is reduced into a set of points26. To achieve this, the two initial 
principal components are first extracted from the positions of the 
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pixels defining the tissue section contour (Fig. 3l). Next, intersec-
tion points between the principal components and the tissue con-
tour are extracted and stored as the initial first level of reference 
points (Fig. 3m). By default, four iterations (n =​ 4) are executed, 
resulting in 32 =​ 2n+1 reference points along the contour of the 
brain section (Supplementary Fig.  3). The two sets of reference 
points (atlas and tissue-section reference points) constitute a set 
of correspondence points that align the atlas and the tissue sec-
tion (Fig.  3m). These correspondence points are then pruned27 

to minimize effects of tissue damage or distortions on the reg-
istration result. These correspondence points are used as input 
to solve analytically the minimization of the bending energy of a 
thin-plate splines deformation field28. The deformation field can 
then be used to generate a mapping between every coordinate in 
the brain tissue section (Fig. 3j) to that of the reference brain atlas 
(Fig. 3n). Using this approach, a collection of individual brain sec-
tions can be reconstructed into a 3D representation of the imaged 
data (Supplementary Video 1).
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When the automated registration results in incorrect placement 
of region boundaries, it is possible to change or remove correspon-
dence points manually and rerun the thin-plate splines algorithm 
(Supplementary Fig.  4). To estimate how the measurement accu-
racy depended on the angle of tissue sectioning and the registra-
tion plane, we compared detection of labeled neurons obtained in 
a number of regions from brains sectioned on the coronal or sagit-
tal planes (Supplementary Fig.  5). As a measurement of registra-
tion accuracy, we defined the difference in the percentage of labeled 
cells found in each anatomical subregion in sagittal compared to 
coronal reconstructions. The average error across all anatomical 
regions was found to be 0.29% (standard deviation (s.d.) =​ 0.96%, 
n =​ 239 brain regions), as defined by the root-mean-squared error 
(Supplementary Figs.  6 and 7). Notably, reconstructed 3D brains 
can be resliced at arbitrary angles, although the sampling strategy 
will still impose limitations on the spatial resolution that can be 
obtained (Supplementary Fig. 8).

Fiber-tract tracing. To construct mesoscale connectomes, it is nec-
essary to perform fiber-tract tracing5. Fiber tracts are geometrical 
features extended in space (spatially coherent) with a set of orienta-
tions at different locations. We used the properties of coherency and 
orientation to further increase the SNR for segmentation of fiber 
tracts and cell processes by computing the structure tensor on the 
detail coefficients of interest followed by segmentation of topologi-
cal skeletons (see Methods). The segmented topological skeletons, 
together with the associated orientation of each pixel (Fig. 4e–g), 
can be used as input to tertiary tractography approaches29.

Resolving the identities of fiber tracts across sectioned tissue is 
challenging. It is therefore desirable to perform fiber tracing in 3D, 
for example, in intact clarified brain tissue imaged using confocal 
or light-sheet microscopy (Fig. 4a–j). To process 3D image stacks 
(Fig. 4h), we developed a set of 2.5D algorithms that segment out 
processes and cell bodies along the z-stack plane (Fig.  4i). This 
approach is comparable in speed to 2D image processing but pro-
vides the accuracy of running 3D wavelet filters by running an addi-
tional connected-components algorithm across the z-stack after 
combined wavelet and structure tensor on each z-plane.

Mapping of single cell co-expression. We further applied our 
approach to determine, at the single-neuron level, the expression of 
markers after imaging of fluorescent proteins (for example, EGFP) 
and immunohistochemistry. To map the anatomical distribution 
of neuron types, we chose to determine the spatial distribution of 
interneurons using transgenic labeling in combination with immu-
nohistochemistry. We used a transgenic mouse line (Lhx6::EGFP) 
in combination with detection of parvalbumin-expressing (Pvalb+) 
and neuropeptide Y-expressing (NPY+) interneurons. Automated 
image analysis resulted in the segmentation of 9,021 labeled cells 
in a single coronal mouse brain section (Fig. 5): Lhx6::EGFP: 66% 
(n =​ 5,958), PVALB::Cy5: 63% (n =​ 5,701) and NPY::Cy3: 15% 
(n =​ 1,342). The processing time for segmentation and registra-
tion to the atlas was approximately 30 s, indicating the scalability 
of whole-brain mapping projects based on our framework. Further 
demonstrating the advantages of an automated framework, we 
could, with high resolution, assign the position of each of these 
9,021 labeled cell bodies to 116 unique regions (Fig.  5a–d). This 
type of comprehensive single-neuron mapping generates detailed 
anatomical definitions that can, for example, describe the relative 
distribution of neuron types across cortical layers and in different 
anatomical subregions (Fig. 5e). We confirmed the non-overlapping 
distributions of PVALB and NPY (n =​ 0) in Lhx6+ cells (Fig. 5g,h; 
37% of cortical NPY+ cells co-express Lhx6::EGFP, n =​ 238, and 
73% of cortical PVALB+ cells co-express Lhx6::EGFP, n =​ 2,752). 
In contrast to cortex, in the striatum 84% of NPY+ cells were also 
Lhx6::EGFP+ (n =​ 101).

We further investigated the laminar distribution of the five dif-
ferent neuron clusters and found that PVALB+ (PVALB only) as well 
as NPY+ (NPY only) cells were primarily localized to layer II/III 
of primary somatosensory cortex barrel field, whereas Lhx6+ (Lhx6 
only) and Lhx6+NPY+ cells were enriched in layer V (Fig. 5e).

Notably, our framework further enables quantification of the 
average fluorescence intensity of each single cell for all labeling 
channels, resulting in a quantitative description of expression levels 
at the single cell level and therefore also of population clustering, 
in a manner similar to gating in flow cytometry (Fig. 5f). Using the 
quantitative information for each fluorescent channel, we clustered 
neurons into five distinct populations based on expected maximi-
zation with Gaussian mixture models (Fig.  5h,i). These clusters 
were then superimposed on the reference atlas to align molecu-
lar and anatomical definitions of the map (Fig. 5h). For example, 
we found that the majority of PVALB+ and Lhx6::EGFP− neurons 
(PVALB+Lhx6−) were in the thalamic reticular nuclei (Fig.  5g,i) 
and that Lhx6+ (Lhx6::EGFP+PVALB−NPY−) cells were, for exam-
ple, found preferentially in zona incerta and in medial amygdalar 
nucleus. This approach can similarly quantify gene expression on 
the subcellular level through detection of single mRNA molecules 
with fluorescent in situ hybridization (Supplementary Fig. 9).

Tracing connectivity using modified rabies virus and transgenic 
mice. Whole-brain mapping of monosynaptic connectivity using 
modified rabies viruses can generate large datasets of cell-type-
specific connectomes at the mesoscale level18,30,31. We applied rabies 
virus tracing to identify the presynaptic partners of defined neuronal 
subtypes in the corticostriatal pathway (Supplementary Video  2). 
We used a Cre-mediated genetic targeting approach to limit the 
uptake of rabies virus to defined neuron types in Cre-expressing 
mouse lines. We first mapped the whole-brain inputs to excitatory 
or inhibitory neurons in the motor cortex (MOp) using Camk2a-
Cre or Gad2-Cre mice, respectively (Fig. 6a–d). To target the main 
neuron types in striatum (CPu), we used D1-Cre, D2-Cre and Chat-
Cre mice to target either medium spiny neurons of the direct path-
way or indirect pathway and cholinergic interneurons, respectively 
(Fig. 6e–j). We mapped the precise neuroanatomical distribution of 
the labeled presynaptic neurons at a whole-brain scale, which pro-
duced a rich dataset that included whole-brain tracing data from 15 
mice and 349,959 annotated neurons (Fig. 6k,l).

Quantitative comparison across a large number of animals and 
experiments allowed us to search for cortical regions that showed 
connectivity patterns similar to those of the thalamus (i.e., inner-
vating both MOp and CPu), which could then be anatomically and 
functionally described as contextual units32,33 instead of as input 
units to motor cortex. We therefore analyzed the whole-brain trac-
ing dataset to specifically identify cortical subregions that exhibited 
dense targeting of both MOp and CPu. We identified three candi-
date regions that satisfied the criteria of serving as contextual units: 
primary somatosensory cortex (SSp), anterior cingulate area and 
orbital cortex (ORB). We further analyzed the cell-type-specific 
organization of SSp, anterior cingulate area and ORB inputs to stria-
tum and found that the ipsilateral inputs in ORB (ORBvl and ORBl) 
displayed preferential targeting to D1+ striatal cells (Fig. 6m). ORB 
therefore displays a unique connectivity pattern among the cortico-
striatal network, preferentially targeting striatal D1+ neurons.

To investigate the laminar distribution of the corticostriatal 
organization further, we explored our dataset to identify proposed 
cell-type-specific connectivity patterns. Unlike previous studies that 
have relied on a small number of cortical neurons34,35, we quanti-
fied a large number of presynaptic neurons in the corticostriatal 
pathway (320,055 neurons) after monosynaptic rabies tracing from 
distinct striatal subtypes. We analyzed the laminar distribution of 
cell-type-specific corticostriatal inputs in SSp and found that the 
major inputs to D1+ and D2+ striatal neurons were found in layer 
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shown in the representative section, –1.5 mm from bregma (scale bar, 1 mm).
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Fig. 6 | Retrograde monosynaptic tracing of corticostriatal networks. a, Reconstruction of inputs to Camk2a neurons in motor cortex by targeted injection 
of glycoprotein-deleted EGFP+ EnvA pseudotyped rabies virus, SADΔ​G-EGFP(EnvA). EGFP+ neurons are color-coded based on anatomical location; see l. 
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of cortical inputs in specific regions (ORB, ACA, SSp). n, Layer-specificity of monosynaptic inputs from SSp. Colors as in l. o, Proportion of inputs from 
subcortical regions. Circles show individual mice. Colors as in l. Error bars: ±​ 1 standard error of measurement. Scale bars, 500 µ​m.
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V, although we also found layer II/III and IV inputs (Fig. 6f,h,n). 
Inputs to Chat+ striatal neurons were primarily located in layer V 
and VI in SSp (Fig. 6j,n). In comparison, we found that inputs to 
Camk2a+ and Gad2+ cells in MOp primarily originated from layer 
II/III of SSp but could be also found in layer V (Fig. 6n).

Comparing inputs to the striatal neuron subtypes on the whole-
brain scale, we found that D2+ striatal neurons display preferential 
input from neurons in cortical regions compared to inputs from 
subcortical structures, whereas D1+ and Chat+ striatal cells receive 
more balanced cortical–subcortical input (Fig. 6o). This evidence 
supports a discrete cell-type-specific pattern of connectivity both 

in the corticostriatal pathway as well as in the input balance from 
cortical versus subcortical regions.

Decoding motor behavior from whole-brain intermediate 
early gene activity. To investigate the behavioral relevance of the  
corticostriatal organization identified by monosynaptic rabies 
tracing, we performed a whole-brain functional assay. Labeling 
neurons based on their expression of immediate early genes (for 
example, c-fos) as a proxy measure of neural activity has been 
valuable in identifying regions and neuron types that are recruited  
during behavior36.
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Fig. 7 | Decoding motor behavior by immediate early gene activity. a, Behavioral track tracing from the open field test in two mice injected with either 
cocaine or saline. b, Coronal sections from the same mice showing the major steps of preprocessing before segmentation. c, Close up on ORB and c-fos 
Alexa Fluor-488 (Alexa488) staining. d, As in c but for DAPI. e, Postfiltering segmentation steps include computing the tensor structure and performing 
watershed-based segmentation. f,g, Segmentation result (red) overlaid on images of (f) c-fos and (g) DAPI. h, Whole-brain 3D reconstruction of same 
mice as in a–j. i, Violin plot of cell count estimates obtained from ORB as shown in f and g; white circle marks median; thick black lines indicate the first 
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j, Normalized fluorescent intensity for 2,135 individual nuclei in ORB. k, Violin plot of variance (σ​2) estimates of fluorescent intensity in ORB; white circles 
mark medians; thick black lines indicate the first and third quartiles; thin black lines extend 1.5×​ the interquartile range; polygons represent density 
estimates of data and extend to extreme values. l, Cumulative distribution of locomotor velocity in open field across 8 mice (gray line, best fit four-
parameter Weibull distribution). m, Meditational regression analysis for c-fos whole-brain data. n, Velocity in open field test as a function of cell count of 
c-Fos+ nuclei of the orbital cortex in saline-treated (coral) and cocaine-treated (turquoise) mice; numbers indicate animal identification number.  
o, Velocity as function of mean fluorescent c-fos intensity; thick gray line indicates regression line when autofluorescence is added as a covariate (gray 
area, 80% credible interval). p–r, Gain control by (p) input gain, (q) output gain or (r) range compression. s, Velocity as a function of DAPI-standardized 
c-fos variance. Lines show posterior estimates of Weibull psychometric functions; dotted lines show 80% credible intervals. t, Posterior estimates of the 
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Studies have mapped cocaine-induced c-fos expression in cortical 
and basal ganglia circuits37,38, and more recently, similar approaches 
have mapped c-fos at a whole-brain scale13,14. We selected acute 
cocaine administration as an assay to map how motor function 
recruits distinct corticostriatal circuits. We exposed mice to cocaine 
or saline and then imaged c-fos expression to identify neurons and 
regions that displayed activation correlated with increased motor 
activity. Motor responses of mice injected with 20 mg/kg cocaine 
or saline were monitored for 20 min in an open field (Fig. 7a; n =​ 4 
mice per group), and brains were sectioned (M =​ 93.6 sections per 
brain, s.d. =​ 11.2 sections per brain) and stained for c-fos as well as 
DAPI (Fig. 7b–d).

To segment cell nuclei and determine their c-fos fluorescence 
intensity, we computed the tensor energy on detail coefficients for 
subsequent watershed segmentation (Fig. 7e–g and Supplementary 
Fig. 9). The segmentation algorithm is based on spatial frequency 
analysis, allowing segmentation of nuclei independently of their 
signal intensity, which resulted in detection of c-fos signal over a 
wide dynamic range (Fig. 7c–f). We mapped the position of c-fos+ 
neurons at the whole-brain scale (Fig. 7h).

We focused our analysis on activity mapping to ORB based on 
the corticostriatal connectivity pattern. We found that cocaine 
did not significantly change the number of c-fos+ nuclei in ORB 
(344 versus 325 c-fos+ nuclei, χ​12 =​ 1, P =​ 0.32; Fig. 7i). We instead 
found that cocaine significantly increased the c-fos intensity levels 
(t492 =​ 15.21, P <​ 0.001; Fig. 7j), as well as the c-fos signal variance 
(Bartlett’s K2 =​ 174.21, degrees of freedom =​ 2, P <​ 0.001; Fig. 7k).

To further map the brain regions that are functionally linked to 
increased locomotion after cocaine administration, we used linear 
mediational analysis on the whole-brain c-fos data. We first char-
acterized the marginal distribution of the behavior across animals 
by a monotonic four-parameter cumulative Weibull distribution 
(Fig. 7l). As a measurement of the relative contribution of a specific 
brain region to the mediated effect, we estimated the proportion of 
the total effect of cocaine on locomotion that is mediated by c-fos 
expression (i.e., relative mediated effect; Fig.  7m). This analysis 
revealed that ORB is a key region mediating the behavioral effect 
and accounted for approximately 7% of the relative mediated effect 
(Pαβ =​ 0.071, 95% confidence interval: [0.00–0.898]). We found that 
the c-Fos fluorescence intensity correlated to velocity better than 
absolute  c-fos+ cell counts (Fig. 7n,o) and that variance in cell counts 
increased with average number of c-fos+ neurons (Supplementary 
Fig. 11). We therefore normalized the variance in c-fos fluorescence 
intensity to DAPI in subsequent analyses. We asked whether we 
could classify the observed relation in ORB between c-fos induc-
tion and locomotion into a distinct form of gain control: input gain, 
output gain or range compression. (Fig.  7p–r). We kept the satu-
ration level fixed at a velocity of 90 cm/s and estimated the fixed-
effect of cocaine on the other two cumulative Weibull parameters 
(slope and intercept; Fig. 7s). Using the marginal cumulative density 
function as prior, we sampled from the posterior density distribu-
tions of the fixed effect of cocaine. We compared the posterior fixed 
effect of cocaine on either intercept or slope to that of our prior N(0, 
0.1) based the Savage–Dickey density ratio test. We found that the 
cocaine-induced locomotion most likely depended on modulation 
of the input gain in orbital cortex ORB (Bayes factor (BF)10 =​ 1.4) 
rather than range compression (BF10 =​ 1.1; Fig. 7t). Taken in com-
bination with our tracing dataset (in which ORB was identified as a 
contextual layer preferentially targeting D1+ striatal neurons) these 
data support ORB as a major corticostriatal hub mediating locomo-
tor effects of cocaine.

Discussion
For invertebrate model organisms, there has been considerable 
progress in developing methods to map and visualize the com-
plete nervous system connectome based on electron microscopy 

reconstructions39–41. Although detailed reconstruction of the mouse 
nervous system at a similar scale would be valuable, there are con-
siderable challenges in acquiring and analyzing data at that scale42. 
To define the organization of circuits in the mouse brain, it is now 
becoming possible to generate a complete map of cell-type-specific 
connectivity using combinations of advanced transgenic, labeling 
and imaging methods at the cellular scale. In spite of great progress 
in labeling methods, methods for registering and mapping neurons 
have, to a large extent, still relied on manual inspection or regis-
tration, and have not been scalable for analysis of large datasets or 
for integration of multiple projects into one database. To address  
these needs, we have developed a computational framework to 
facilitate comprehensive investigations of mouse brain circuits at 
the cellular level.

We have developed a computational framework that enables 
automated segmentation of labeled neurons at a whole-brain scale, 
independent of imaging method. Based on this computational 
framework, data can be analyzed and presented in a scale-invariant 
whole-brain mouse atlas that allows rapid data comparison and data 
sharing between projects and laboratories. A key advantage of our 
framework is the ability to rapidly visualize and share whole-brain 
data using commonly available infrastructure. To facilitate integra-
tion of this platform, we provide video tutorials for common appli-
cations (http://wholebrainsoftware.org/tutorials).

We present the application of our computational framework to 
whole-brain mapping of rabies tracing data derived from different 
neuron subtypes in the corticostriatal pathway and in combination 
with whole-brain definition of cocaine-induced neuronal activity 
using c-fos  mapping. Using whole-brain rabies tracing, we deter-
mined that ORB displays characteristics of a contextual layer in the 
corticostriatal pathway, possibly shaping interactions between pri-
mary motor cortex and the striatum, and furthermore that it pref-
erentially targets the direct-pathway D1+ striatal neurons. We could 
further integrate this connectivity pattern with cocaine-induced 
activity changes, using whole-brain segmentation of c-fos levels in 
single neurons after cocaine administration, which identified the 
ORB as a major mediator of cocaine-induced locomotion.

We anticipate that the versatility and accessibility of this frame-
work will promote integration of new technologies and user-based 
modifications. For example, neuroanatomical methods that lever-
age the power of next-generation sequencing will be important for 
the development of computational neuroanatomy, including lineage 
tracing by barcoded DNA43, connectivity tracing of individual neu-
rons by expressing RNA barcodes44, in situ sequencing45,46 and spa-
tial transcriptomics47.

We expect that an increasing focus on whole-brain characterization 
of neurons, circuits and activity will benefit from a unified and intuitive 
approach to data analysis. Notably, our framework can integrate future 
advances in imaging, incorporate new molecular data to improve neu-
roanatomical definitions and support data sharing in mapping projects.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41593-017-0027-z.
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Methods
Virus construction and production. A protocol modified from Wickersham, 
Sullivan and Seung48 was used to produce rabies virus. To make EnvA pseudotyped 
rabies virus, un-pseudotyped rabies viral particles were transferred onto the BHK-
EnvA cell line on day 1. To decrease the contamination of glycoprotein coated 
rabies virus, cells were then trypsinized, washed and replated in a new cell culture 
flask. This procedure was repeated for 2 d. Collected supernatants were then 
filtered by 0.45-µ​m filter and ultracentrifuged at 60,000 g for at least 2 h on day 
4. TVA, mCherry and RG were amplified, respectively, from pCMMPTVA80018 
(Addgene plasmid 15778), pAAV-EF1a double-loxP-flanked-hChR2(H134R)-
mCherry-WPRE-HGHpA (Addgene plasmid 20297) and pHCMV-Rabies G49 
(Addgene plasmid 15785) by Phusion High-Fidelity DNA polymerase (Finnzymes, 
Finland). One round of overlapping polymerase chain reaction (PCR) was then 
performed to fuse TVA and mCherry together, using TVA Forward (NheI) 
and mCherry Reverse (AscI) as primers. A similar approach was used to create 
a TVA-t2A-RG PCR product. Inserts were digested by NheI and AscI (New 
England Biolabs, UK) and cloned into the pAAV-EF1a-DIO plasmid backbone. 
Transformation was done in NEB-10b Escherichia coli (New England Biolabs, UK), 
and bacteria were plated on 50 mg/mL ampicillin LB agar plates. Plasmid DNA 
was extracted from cultured colonies and confirmed by NheI and AscI digestion. 
Positive clones were sent for sequencing (Eurofins MWG Operon, Germany), and 
the results were analyzed with National Center for Biotechnology Information 
(NCBI) BLAST. AAV production from plasmids was done by the Gene Therapy 
Center Vector Core at the University of North Carolina (North Carolina, USA).

Viral injections. Animal experiments were carried out following guidelines of the 
Stockholm municipal committee, the Scripps Research Institutional Animal Care 
and Use Committee and with the approval of the Stanford University Institutional 
Review Panel. All viral injections into the striatum (Drd1a-cre (EY262)50, n =​ 4; 
Drd2-cre (ER44)50, n =​ 3; Adora2a-cre (GENSAT: KG139), n =​ 1; Chat-IRES-
cre (Jackson Labs: 006410), n =​ 4) were done at the following coordinates from 
bregma: AP, +​0.6 mm; ML, +​2.2 mm; DV, –3.5 to –3.2 mm (500 nL). Injections into 
the motor cortex (Camk2a-cre (Jackson Labs: 005359), n =​ 4; Gad2-cre (Jackson 
Labs: 010802), n =​ 4) were done at AP 1.5 mm, ML 1.5 mm, DV –0.4 mm (500 nL). 
Injections were performed in 2- to 6-month-old mice under isoflurane anesthesia; 
the mice were injected with buprenorphine after surgery. In all mice, the second 
injection was performed after 2–4 weeks with (EnvA)SAD∆​G-EGFP or (EnvA)
SAD∆​G-ChR2(H134R)-mCherry (Adora2a-cre, n =​ 1; D1-cre, n =​ 2; Chat-cre, 
n =​ 3) at the same location. For the striatal injections we either used AAV5-TVA-
t2a-RG or a dual-vector helper-virus system (AAV5-EF1a-DIO-TVA-mCherry and 
AAV5-EF1a-DIO-RG at a 1:1 ratio). In experiments with Camk2a-cre and Gad2-
cre animals we used AAV9-CAGFLEX-RG (Addgene plasmid 48333) and AAV9-
CAG-FLEX-TVA-mCherry (Addgene plasmid 48332) at a 1:1 ratio.

Immunohistochemistry. All immunohistochemistry was performed in either 
wild type C57BL/6 J mice (n =​ 4 cocaine treated, n =​ 4 saline treated) for c-fos, 
or as in the example provided in quantitative single cell co-expression analysis 
provided a single Lhx6-EGFP mouse (Jackson Labs: 3839374). All animals were 
male and between 8 and 13 weeks old. Brain sections were cut at a thickness of 
40 µ​m on a vibratome (Leica VT1000, Leica Microsystems GmbH) and placed in 
sodium citrate (10 mM sodium citrate, 0.05% Tween 20, pH 6) for 1–2 min for 
antigen retrieval, followed by a wash in TBST (0.3% Triton X-100). After antigen 
retrieval blocking was performed with 5% donkey serum in TBST for 1 h at room 
temperature (RT). Sections were then incubated with primary antibody—c-fos 
(1:1,000, Santa Cruz, anti-goat, sc-52, Lot G2612), parvalbumin (1:1,000, anti-
guinea pig, Swant, Lot GP72), neuropeptide Y (1:500, anti-rabbit, Peninsula, 
lot T-4070) or Forkhead box protein P2 (FoxP2; 1:500, anti-rabbit, Abcam, Lot 
GR91556-1)—on a shaker at RT overnight. (For FoxP2 staining, n =​ 3 C57BL/6 J 
mice were used.)

The following day, sections were washed at RT with TBST for 10 min followed 
by incubation for 5 h at RT on a shaker with a secondary antibody at 1:500: Alexa 
Fluor-488-conjugated antibody (Jackson ImmunoResearch, 711-545-152, Lot: 
100709), Cy5-conjugated (Jackson ImmunoResearch, 706-175-148, Lot: 110663) or 
Cy3-conjugated (Jackson ImmunoResearch, 711-165-152, Lot: 114518). Washing 
was performed at RT (20 °C) in TBST for 10 min followed with TBS (10 min) and 
then with 1×​ PBS (10 min). For c-fos staining, DAPI (1:50,000, Biotium, 40011, 
Lot: 11D1017) was added to PBS and incubated for 4 min at RT. Sections were 
mounted with SlowFade Gold antifade reagent (Life Technologies, 10 mL, S36936) 
and then imaged.

In situ hybridization. RNA in situ hybridization was performed using the 
RNAscope fluorescent multiplex assay (Advanced Cell Diagnostics, ACD, 
Hayward, CA) according to the manufacturer’s instructions. In brief, C57BL/6 J 
mouse brains were perfused with 4% paraformaldehyde and left for postfixation in 
4%PFA overnight. The brains were subsequently cryoprotected by immersion in a 
15% sucrose solution (in PBS) overnight at 4 °C, and the process was repeated over 
the following night with a 30% sucrose solution. Brains were then frozen in OCT 
on dry ice and stored at –80 °C. Cryosections (14 µ​m) were made using CryoStar 
NX70 cryostat (ThermoScientific) and stored at –80 °C until further processing.

Immediately before RNA in situ hybridization, cryosections were washed 
once in PBS (1×​). Subsequently, the sections were boiled in pretreatment 
reagent 2 for 5 min, washed in ddH2O and immersed in 100% ethanol. Sections 
were dried at room temperature and a hydrophobic barrier was drawn around 
the individual sections using an ImmEdge Hydrophobic Barrier Pen (Vector 
Labs, Inc.). All following incubation steps were performed in a HybEZTM 
Hybridization System oven (ACD). Next, the sections were incubated with 
protease 4 solution (ACD) for 30 min at 40 °C. Then sections were washed 
twice in fresh ddH2O and subsequently hybridized with multiplexed probes: 
MmSlc32a1-Ch1 (Alexa Fluor-488), Mm-Slc17a6-Ch3 (Atto 647) and 
Mm-Pdyn-Ch2 (Atto 550) for 2 h at 40 °C. After hybridization, the sections 
were washed twice in RNAscope wash buffer (ACD), and four consecutive 
amplification steps were performed using the RNAscope Fluorescent Multiplex 
Detection reagents 1–4 (amplifier 4 variant A was used for fluorescent labeling). 
After the last amplification step, the sections were immersed in DAPI for 30 s and 
immediately covered with a coverslip, using a protective fluorescent mounting 
medium. smFISH experiments were imaged on confocal microscope with 
40×​ optical magnification and fifteen optical z-planes.

smFISH quantification. Segmentation of individual transcripts was done on each 
channel separately. Before binary segmentation of transcripts the raw confocal 
image was processed with a gray morphology top-hat filter to decrease background 
noise. To assign individual transcripts to individual cell nuclei, the cell nuclei 
(DAPI) were segmented by first preprocessing the DAPI image by extracting the 
tensor structure energy, followed by binary segmentation and watershedding. 
The perinuclear zone was then obtained by iterative dilatations on the binary-
segmented cell nuclei. Cell nuclei were then assigned to perinuclear zones by 
a point-in-polygon algorithm. The transcript gene identity, position within 
perinuclear zone and position within a given cell nuclei were used as input to the 
affinity propagation clustering algorithm42, using a negative-squared-distances 
similarity measure and with the initial number of clusters set to the number of 
detected cell nuclei using the apclusterK() function in the apcluster R package51.

Widefield imaging. Imaging was done at 10×​ 0.40 NA (15506285 HCX PL APO 
10×​/0.40 CS, Leica Microsystems GmbH) on a fluorescent microscope (Leica 
DM6000B, Leica Microsystems GmbH) with a motorized stage automatically 
controlled through µ​Manager52. Images were acquired by a Hamamatsu 
OrcaFLASH 4.0 digital camera (C11440-22CU ORCA-Flash4.0 V2 Digital CMOS 
camera, Hamamatsu Photonics K.K.) at 16 bit depth resolution with 2,048 ×​ 2,048 
pixels. All widefield imaging, except for rabies injections in Camk2a-cre and Gad2-
cre animals, was done on a Leica DM6000B microscope. For Camk2a-cre and 
Gad2-cre mice, we used an IN Cell Analyzer 6000 with a 10×​ 0.45 NA objective 
(GE Healthcare Life Sciences, Chicago, US).

Confocal imaging. Confocal imaging was done on a Zeiss LSM 510 or 
a LSM 800 confocal microscope (Zeiss GmbH). For co-localization with 
immunohistochemistry (Fig. 5) a 15-step z-stack covering the 40-µ​m section was 
imaged using an LSM 800 with 20×​ 0.8 NA objective. For in situ hybridization, 
imaging was done using an LSM 800 with 40×​ 1.3 NA oil immersion objective. All 
images had 16-bit depths. We used a Zeiss LSM 510 to acquire the confocal images 
in Supplementary Fig. 2. Objectives for the Zeiss LSM 510 are specified in the 
Supplementary Fig. 2 legend.

Light-sheet CLARITY imaging. Brains were perfused and incubated with 
CLARITY monomer solution, containing 1% acrylamide, 0.0125% bis-acrylamide 
and 4% PFA, and then polymerized at 37 °C for 6–7 h. Brains were passively cleared 
in SDS Borate Buffer (pH 8.5) at 37 °C for 4–5 weeks, equilibrated in Focusclear for 
imaging and imaged using COLM methods53. Analysis of light-sheet data differs 
from that of sectioned tissue in that the distance between adjacent optical planes 
is normally much smaller than the distance between adjacent sectioned planes. 
Therefore, an additional postprocessing step is needed for segmentation to ensure 
that segmented connected components that accord across z-planes are not counted 
more than once. This postprocessing step includes a connected-components 
algorithm running across the z-stacks on the binarized image.

Cocaine-induced locomotion. To measure locomotion, we used the open field 
test as a behavioral test for wild-type mice. Cocaine hydrochloride (C5776, Sigma-
Aldrich) was dissolved in 9 mg/mL saline and administered at a single dose of 
20 mg/kg by intraperitoneal injection. Mice were returned to the home cage for 
5 min for the drug to begin to take effect and then placed inside the open field 
arena. The control group (saline) were injected intraperitoneally with the vehicle 
(NaCl 9 mg/mL). Mice (n =​ 4 per group, all male) were monitored in open field 
using the TSE Multi Conditioning System (TSE Systems GmbH). Mice were 
randomly assigned and counterbalanced by treatment (cocaine vs. saline), time 
of testing (done at four time points in the middle of the day) and conditioning 
system (box A vs. box B). After each 20-min session, the mouse was brought 
back to its home cage, and 90 min after the injection brains were harvested 
by transcardial perfusion with 1×​ PBS followed by 4% PFA under sodium 
pentobarbital (0.15 mg/kg) anesthesia. To aid immunohistochemistry, perfusion 
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was done with 4% PFA in 1×​ PBS (pH 7.4; with picric acid and glutaraldehyde) on 
the day of perfusion. Brains were further fixated in 4% PFA at 4 °C overnight. All 
animals were housed in groups of 3–5 mice. All mice were housed on a 12:12-h 
nonreversed light:dark cycle.

NURBS atlas. We started from the scalable vector graphics (SVG) files of the 
original 2008 Allen reference atlas. We manually redefined and adjusted each plate. 
Next, we simplified points along the outer contours of each brain region using the 
same set of PCA-generating correspondence points, starting with the brain section 
outline. Adjacent sections were then merged in a sequential manner by the lofting 
technique. The NURBS atlas was adjusted manually using the trial version of Maya 
(Autodesk, Inc) when needed.

Computing intersection of a plane with NURBS surfaces. We use a general 
strategy to obtain a curve from the intersections of two surfaces, in which the 
steps involved are: (i) determine parametric curves, (i) transform curve segments 
and surface patches to Bézier form, (iii) conduct convex-hull intersection test 
to determine whether the curve can be approximated by a line, (iv) obtain 
intersection points in Euclidean space from intersecting lines and quadrilaterals 
and (v) connect intersection points to curves via a marching scheme. Throughout 
this process, a set of tests are performed at each stage, and when a proper curve 
cannot be approximated, the algorithm halts and throws an exception for  
that intersection.

JavaScript Object Notation (JSON) data format for serialization. Segmentation 
and registration results can either be transferred to collaborators as a tabulated 
tidy data frame or prepared for serialization on the web through a collection of 
name/value pairs based on JavaScript Object Notation (JSON). This open format 
describes the neuroanatomical spatial features of an image, along with nonspatial 
attributes. The format is called RosettaBrainJSON (http://openbrainmap.org/
rosettabrainjson/) and is licensed under Creative Commons (CC BY 4.0).

R package and dependencies. Higher-level analysis and plotting functions were 
written in base R with image processing done through calls to C+​+​ code via the 
Rcpp package16,54. For plotting in R of raster images, we used the png package55. For 
vector processing and import into R, we used the packages grImport56 and XML57. 
For 3D rendering, we used the packages rgl and misc3d58,59. For general data 
handling and preprocessing we used dplyr60. All of these packages are dependencies 
of the Wholebrain R package.

The following C/C+​+​ libraries were used: OpenCV 3.361 (for image 
processing), FFTW3 3.362 (for computations of the discrete Fourier transform) 
and Eigen 3.363 (for linear algebra, numerical solvers, etc.). We thank R. Hussain  
(wavelets; https://github.com/rafat), M. Schmieder (thin-plate splines;  
https://code.google.com/p/ipwithopencv) and P. Gadomski (coherent point 
drift; https://github.com/gadomski) for providing open source C+​+​ classes that 
we built upon. C/C+​+​ code was compiled using Apple LLVM version 8.1.0 
(clang-802.0.42) on macOS, gcc 4.9 on Linux, and Rtools 3.4 with mingw-w64 v3 
on Windows 7.

Multiresolution decomposition. A filter bank F transforms an input x into an 
output y =​ F(x). Let Gj be the low-pass filter at the jth level and Hj the high-pass 
filter at the jth level. As stated in the main text, the Haar low-pass filter Gj simply 
averages adjacent entries of its input, in matrix form:
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The Haar high-pass filter Hj computes half the difference between successive 
input samples, in matrix form:
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where the size of the filters n ×​ n matches the size of the image initially. Normally 
one would then downsample the signal to avoid antialiasing when reconstructing 
the signal. However, in our case it is more important to create a shift-invariant 
output of the filter bank, and this can be achieved by upsampling the filter by 
starting with the identity matrix, inserting empty rows in it and multiplying with 
the filter, thereby creating holes of zeros in the filter–hence the original French 
name algorithm à trous (with holes), or more commonly the stationary wavelet 
transform (SWT), due to its shift-invariant properties64. Upsampling is represented 
in matrix form as an array of size 2n ×​ n:
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The combined operation of low-pass filtering and then upsampling is 
represented as the low-pass branch Lj:
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Similarly, the high pass branch Bj is given by:
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The low-pass branch is sent forward and at each stage the output from  
the high pass branch is stored as the set of detail coefficients dj (Supplementary 
Fig. 2b). The output can hence be seen as rewriting the input x in terms of another 
basis to produce the output y = F(x), so the output from a filter bank with  
three levels, J =​ 3, is
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where aJ is the set of approximation coefficients and dj are the detail coefficients. 
When applying the filter bank to a two-dimensional signal, one obtains additional 
detail coefficients row-wise, column-wise and diagonally.

Filter banking is merely one specific way to implement hierarchical 
decomposition. More generally put, hierarchical decomposition via filter banks 
writes a signal in terms of new basis. To find this basis one can use the dilation 
function, also known as at the scaling function:
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as well as the wavelet function:

∑ ϕ= −−w t h k t k(2 ) 2 ( ) (2 )j

k

j1

For the Haar wavelet, substituting the low-pass filter into Eq. (1) gives us the 
case definition:

ϕ ϕ ϕ= + − = ∈




t t t t( ) 2 (2 1) 1 if [0, 1)
0 otherwise

The equation above gives us the Haar scaling function. Likewise the high pass 
filter can be substituted into Eq. (2), giving us the Haar wavelet function:

ϕ ϕ ϕ= − − =
∈ .

− ∈ .








t t t
t

t( ) 2 (2 1)
1 if [0, 0 5)

1 if [0 5, 1)
0 otherwise

The Haar wavelet function is the simplest wavelet, but WholeBrain comes 
packaged with a total of 44 different wavelets. Which wavelet is best suited for 
neuroanatomical segmentation remains an open question, but we are quite 
satisfied with the output from Debauchies wavelet 2 (db2). In addition to the 
filter-bank implementation, WholeBrain comes with the possibility of constructing 
biorthogonal wavelets using the lifting scheme. The lifting scheme does not require 
any computation using the Fourier transform, and it can also be used to construct 
an integer wavelet transform, that is, a wavelet transform that maps integers to 
integers, which most of the time is more suitable for microscope images that are 
usually encoded with uint16-bit depths.

Segmentation of features by thresholding wavelet coefficients. Instead 
of running an inverse transform at each scale and hence increasing the 
computational time, we simply added the detail coefficients for a given scale 
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together by a weighted average. This weighted average was subsequently used 
for binary segmentation by thresholds defined by the user. Individual features 
such as cell bodies are segmented from the thresholded, weighted detail 
coefficients by a standard connected components algorithm22. In cases such as 
immunohistochemistry of cell nuclei (for example, c-fos), additional steps with 
the computation of tensor structure on the detail coefficients and subsequent 
extraction of the tensor structure trace or energy, tr(T) (see “Segmentation of 
processes using tensor structure,” below), are performed, followed by thresholding 
and watershedding (Supplementary Fig. 10c,d). In the c-fos experiments we  
used Shannon entropy-based binary thresholding65 for DAPI and c-fos cell  
nuclei segmentation.

Segmentation of processes using tensor structure. Anatomically, a cell body can 
more or less be perceived as a point feature; the most important parameter is its 
location. This is not true for a fiber tract or a cell process outgrowth, which are 
better conceived as geometrical features extended in space (spatially coherent) 
with a set of orientations at different locations. We here leverage these additional 
properties of coherency and orientation to increase the SNR for segmentation 
of fiber tracts and processes. We extracted the orientation and coherency of 
fluorescent signals at the set of detail coefficients where the SNR for processes 
peaked (d1), by first computing the gradient magnitude from the Scharr operator 
gradient66 and then computing its associated structure tensor67, defined for each 
location as the 2 ×​ 2 symmetric positive matrix T:
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





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





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f f f f

f f f f

, ,

, ,

x x w x y
w

x y
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Where fx and fy are the Scharr derivatives of the detail coefficients d x y( , )1  along 
the columns, x, and rows, y, respectively. Furthermore, the weighted inner product 
between two arbitrary images g and h is defined as:

R

∬=g h w x y g x y h x y dxdy, ( , ) ( , ) ( , )w
2

where w is the Gaussian weighting function whose s.d., or kernel size, determines 
the area of interest, which is set and determined by the user’s imaging resolution 
relative to the size of the labeled cell outgrowth processes. Once the structure 
tensor T is computed, it is trivial to obtain the following three properties for each 
location in d1: orientation, coherency and trace matrix.

Orientation, θ:

θ =
−
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Coherency, C:

λ λ
λ λ

=
−
+

C max min

max min

where λmax and λmin are the largest and the smallest eigenvalue of the tensor, 
respectively.

Trace, Ttr( ), is defined as:

= +T f f f ftr( ) , ,x x w y y
w

The trace of the tensor structure is not primarily used for segmentation of 
processes, but, as mentioned in the “Segmentation of features by thresholding 
wavelet coefficients” section, it is quite useful for segmenting cell nuclei with 
differential fluorescent intensity (for example, immunohistochemical fluorescent 
labeling of immediate early genes; Fig. 6 and Supplementary Fig. 10). The 
coherency on a set of small-period detail coefficients, for example, d1, is used for 
binary segmentation of labeled processes.

For processes such as dendrites and axons, to obtain a thin shape that is 
equidistant from the boundaries of the labeled processes (i.e. a topological 
skeleton) we applied the Zhang–Suen thinning algorithm68 to the binary segmented 
image. The skeleton is then pruned, similarly to Arganda-Carreras et al.69, into 
endpoints (less than two neighboring segmented pixels), junctions (more than 
two neighboring segmented pixels) and slabs (exactly two neighboring segmented 
pixels). The endpoints and junctions, together with the segmented cell bodies, can 
then be seen as nodes that delineate the slabs as belonging to a subset of pixels 
defining vertices and all of which, in the end, are used for visualization of labeled 
processes online (Fig. 2c).

Since several pruning and tractography algorithms are already available29,70–72 
and the user might want to create their own, the output is also provided for each 

single pixel that forms the segmented topological skeletons, together with the 
pixel’s associated orientation (represented as hue in Fig. 4e–g).

Registration with nonrigid free-form deformation (FFD) using thin-
plate splines (TPS). To map the coordinates of a target image to those of a 
reference image, we used thin-plate splines (TPS). We start out by segmenting 
the overall contours of both the target brain section and the reference brain 
section from the standardized atlas. Using the contours of the overall brain 
section, as well as any detected hollow regions within the boundaries  
of the brain section, such as ventricles, the algorithm then extracts the 
principal axes using principal component analysis. Based on the intersection 
of the principal axes with the contour we iteratively generated a set of 
homologous correspondence points between the two sections by the  
following algorithm26:
1. Set level =l 1
2. While ≤l L
3. Generate a midpoint qi

 between pi
 and 

+pi 1
 such that = + ∕+( )q p p 2i i 1

, 
where the points are indexed based on their clockwise alignment on the 
contour perimeter

4. Find a point xi on the contour between pi
 and 

+pi 1
 such that xi lies on the 

contour at the shortest distance from a line intersecting the contour and 
midpoint qi

, perpendicularly to the line between pi
 and 

+pi 1
5. Iterate steps 3–5 until the whole contour has been traced in a clockwise order, 

i.e., =p pi n
 and =+p pi 1 1

6. Make a new vector, p′​ in which all new xi and qi
 are interleaved together with pi

7. Increment the level = +l l 1. Set = + +′p p q x as the new vector = ′p p
The output of the above steps can be seen in Supplementary Fig. 2; the user 

defines the number of levels, L, needed to achieve a good correspondence. The 
more levels are added, the more correspondence points are generated, and the 
computational complexity of thin-plating itself is O n( )3 , where n is the number of 
correspondence points.

The TPS interpolation δ x y( , ) minimizes the bending energy:

R

∬ δ δ δ= + +δ ( )I dxdy2xx xy yy
2 2 2

2

with the form:

∑δ = + + + −
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n
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where, a1, ax, ay and U(r) =​ r2log r are the affine parameters and wi is the thin-plate 
splines parameter. The TPS interpolation should have square integrable derivatives 
if the following two conditions hold:
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= = =
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i
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i i
i
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i i
1 1 1

A linear system is obtained for the TPS coefficients, and a regularization 
parameter, λ = .0 001, is added to control amount of smoothing to avoid ripples in 
the obtained transform. If λ = 0, an exact interpolation is performed26,28.

Statistical analysis. For all statistical inferences made, we examined 
distribution assumptions with the Kolmogorov–Smirnov test of equality and 
Bartlett’s test of equal variances. These tests are only reported when significant 
deviations from assumptions were observed. For nonparametric count data 
between two groups, we used Pearson’s chi-squared test of independence. 
Student’s t tests were used when assumptions were met, with adjusted degrees 
of freedom when equal variances could be assumed. Only two-sided tests were 
performed. For clustering of single-cell coexpression analysis, we used the R 
package Mclust with expected maximization and Gaussian mixture models. 
For linear regression analysis of locomotion regressed on c-fos intensity 
background, we added autofluorescence as a covariate rather than excluding 
data points with high autofluorescence due to staining variability. All statistical 
analyses were done in R16. For Bayesian analysis and meditational analysis, see 
sections “Estimating mediating effects of c-fos expression to cocaine induced 
locomotor activity” and “Psychophysical scaling by gradient-based Markov 
chain Monte Carlo (MCMC)”. For the signal-to-noise ratio evaluation in Fig. 3, 
the Rose criteria73 was used.

No statistical methods were used to predetermine sample sizes, but our 
sample sizes are similar to those reported in previous publications30,31. Injections 
considered outside of the stereotactic coordinates were excluded and not 
further imaged or processed. We did not perform any replication experiments. 
Pseudorandomization was performed for the cocaine administration study. In 
cocaine administration experiment, we counterbalanced the assignment of mice to 
each group (cocaine vs. saline) ×​ (box A vs. box B) ×​ (time of testing).
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Estimating mediating effects of c-fos expression to cocaine induced locomotor 
activity. Mediational analysis was done in R using the MBESS package, following 
Preacher & Kelley74.

Psychophysical scaling by gradient-based Markov chain Monte Carlo (MCMC). 
We assume that motor behavior observed in Fig. 7l can be described with the four-
parameter Weibull density distribution, f(x):
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which gives the cumulative density distribution:
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which we directly translate into the psychophysical scaling between average 
velocity for the ith mouse, ̄vi , and relative variance in c-fos activation, x i:
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where k is the shape, or slope, parameter and λ​ is the location, or intercept, 
parameter; 0.9 and 1 are estimated from the marginal distribution of the locomotor 
behavior itself and set the output range. Likewise, we set λ​ =​ 0.55 and k =​ 2.5 based 
on initial fit to the marginal distribution; we then estimated the effect of cocaine with 
prior Gaussian(0, 0.1). Bayesian statistics were done in R using the rstan75 package.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Code access and supplementary software instructions. Source code can be 
accessed at https://www.github.com/tractatus/.

Data availability statement. The datasets generated during and/or analyzed during 
the current study, if not already available on http://www.wholebrainsoftware.org, 
http://www.github.com/tractatus or http://www.openbrainmap.org, are available 
from the corresponding authors on reasonable request. Source code is licensed 
with a GPLv3 license.
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    Experimental design
1.   Sample size

Describe how sample size was determined. No statistical methods were used to pre-determine sample sizes but our sample 
sizes are similar to those reported in previous publications (Watabe-Uchida M, et 
al, Neuron 2012; Pollak Dorocic I, et al, Neuron 2014).

2.   Data exclusions

Describe any data exclusions. Injections considered outside of the stereotactic coordinates were excluded and 
not further imaged or processed.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

We did not perform any replication experiments.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Pseudo-randomization was performed for the cocaine study (Figure 7). Where 
wildtype animals were assigned to (cocaine vs. saline) x (boxA vs. boxB) x (time of 
testing), (4 vs 4) x (4 vs 4) x (4 time points).

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

There was no blinding performed.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Several parts of the method section is dedicated to the software and code is freely 
available on github.com/tractatus/wholebrain as well as detailed instructions for 
installation and use on www.wholebrainsoftware.org/ 

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

Plasmids are available from Addgene (Addgene plasmid 15778, Addgene plasmid 
20297, Addgene plasmid 15785, Addgene plasmid 48333, Addgene plasmid 48332)  
 
All mice (Jax and GENSAT) as well as reagents IHC and ISH are available  from 
commercial vendors.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

The antibodies are commonly used in the field. 
cfos (Santa Cruz, anti-goat, sc-52, Lot G2612) 
parvalbumin 1:1000 (anti-guinea pig, Swant, Lot GP72)  
neuropeptide- Y 1:500 (anti-rabbit, Peninsula, Lot T-4070) 
Forkhead box protein P2 1:500 (anti-rabbit, Abcam, Lot GR91556-1)

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. Provide information on cell line source(s) OR state that no eukaryotic cell lines were 

used.

b.  Describe the method of cell line authentication used. Describe the authentication procedures for each cell line used OR declare that none 
of the cell lines used have been authenticated OR state that no eukaryotic cell lines 
were used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

Confirm that all cell lines tested negative for mycoplasma contamination OR 
describe the results of the testing for mycoplasma contamination OR declare that 
the cell lines were not tested for mycoplasma contamination OR state that no 
eukaryotic cell lines were used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

Provide a rationale for the use of commonly misidentified cell lines OR state that no 
commonly misidentified cell lines were used.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

All mice were male and  2-6 months old. Wild-type mice were C57BL/6J (n = 9). 
Transgenic strains used: Camk2a-cre [Jax: 005359] n = 4, Gad2-cre [Jax: 010802], 
Drd1a-cre (EY262) n = 4, Drd2-cre (ER44) n = 3, Adora2a-cre [GENSAT: KG139] n = 
1, Chat-IRES-cre [Jax: 006410] n = 4

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Provide all relevant information on human research participants, such as age, 
gender, genotypic information, past and current diagnosis and treatment 
categories, etc. OR state that the study did not involve human research 
participants.


	An interactive framework for whole-brain maps at cellular resolution

	Results

	Vector and raster representation in neuroanatomy. 
	Scale-invariant reference atlas. 
	Interactive web interface. 
	Segmentation by multiresolution decomposition. 
	Registration to standardized atlas. 
	Fiber-tract tracing. 
	Mapping of single cell co-expression. 
	Tracing connectivity using modified rabies virus and transgenic mice. 
	Decoding motor behavior from whole-brain intermediate early gene activity. 

	Discussion

	Methods

	Acknowledgements

	﻿Fig. 1 A reference atlas based on vector graphics.
	Fig. 2 A framework for standardizing and sharing neuroanatomical data.
	﻿Fig. 3 Method for segmentation and registration.
	Fig. 4 Compatibility of the framework with different imaging systems.
	﻿Fig. 5 Mapping of molecular identity and neuron types.
	﻿Fig. 6 Retrograde monosynaptic tracing of corticostriatal networks.
	﻿Fig. 7 Decoding motor behavior by immediate early gene activity.


